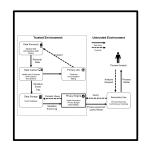


Privacy in Process Mining: Motivation, Method and Research Challenges

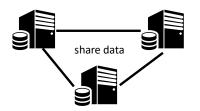

Agn<mark>es</mark> Koschmider

Group Process Analytics, Kiel University, Germany

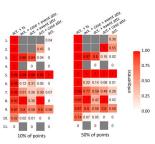
Overview

Motivation

Method


CAU

Christian-Albrechts-Universität zu Kiel


Research Challenges

Privacy Risks

C A U Christian-Albrechts-Universität zu Kiel

ivent log

S. Nuñez von Voigt, S.A. Fahrenkrog-Petersen, D. Janssen, A. Koschmider, F. Tschorsch, F. Manhardt, O. Landsiedel, M. Weidlich: Quantifying the Re-identification Risk of Event Logs for Process Mining -Empiricial Evaluation Paper. CAISE 2020: 252-267

06.09.2021

Case

107

1968

Male

	A U -Albrechts-Universität zu Kiel						
	Case attributes			Ac	tivity Times	tamp Eve	nt attribute
	Patient	Birth	ender	Activi',	Timest .np	Docto	-
(104	1935	Male	Blood Test	03/03/19 17:43	Dr. Scott	
	104	1935	Male	СТ	03/05/19 18:15	Dr. Doe	
Case	104	1935	Male	Surgery	03/07/19 08:23	Dr. Doe	
	104	1935	Male	Rehab	03/10/19 09:36	John Brown	
	105	1968	Male	Blood Test	03/03/19 23:28	Dr. Fox	C
Case	105	1968	Male	MRT	03/04/19 23:53	Dr. White	> Events
Case	106	1990	Female	Session	03/03/19 12:34	Dr. Black	
	106	1990	Female	Abortion	03/08/19 16:23	Dr. Scott	
	107	1968	Male	Blood Test	03/02/19 18:25	Dr. Scott	

MRT

03/06/19 11:32

Dr. Fox

Transform Event Log

CAU

CAU

Christian-Albrechts-Universität zu Kiel

Christian-Albrechts-Universität zu Kiel

Case	e Birth	Gender	Activity	Timestamp	Doctor
104	1935	Male	[Blood Test, CT,]	[03/03/19, 03/05/19,]	[Scott, Doe,]
105	1968	Male	[Blood Test, MRT,]	[03/03/19, 03/04/19,]	[Fox, White,]
106	1990	Female	[Session, Abortion]	[03/03/19,03/08/19]	[Black, Scott]
107	1968	Male	[Blood Test, MRT]	[03/02/19,03/06/19]	[Scott, Fox]

Quantify Uniqueness

Considering case atrributes: given case attribute **Gender**

Case	Birth	Gender	Activity	Timestamp	Doctor
104	1935	Male	[Blood Test, CT,]	[03/03/19,03/05/19,]	[Scott, Doe,]
105	1968	Male	[Blood Test, MRT,]	[03/03/19, 03/04/19,]	[Fox, White,]
106	1990	Female	[Session, Abortion]	[03/03/19,03/08/19]	[Black, Scott]
107	1968	Male	[Blood Test, MRT]	[03/02/19,03/06/19]	[Scott, Fox]

Quantify Uniqueness

CAU

Christian-Albrechts-Universität zu Kiel

Considering case attributes: given case attribute

	Case	Birth	Gender	Activity	Timestamp	Doctor
	104	1935	Male	[Blood Test, CT,]	[03/03/19, 03/05/19,]	[Scott, Doe,]
	105	1968	Male	[Blood Test, MRT,]	[03/03/19,03/04/19,]	[Fox, White,]
\rightarrow	106	1990	Female	[Session, Abortion]	[03/03/19,03/08/19]	[Black, Scott]
	107	1968	Male	[Blood Test, MRT]	[03/02/19,03/06/19]	[Scott, Fox]

1/4 = 0.25 = 25% re-identification risk

Quantify Uniqueness

Case	Birth	Gender	Activity	Timestamp	Doctor
104	1935	Male	Blood Test, CT,]	[03/03/19,03/05/19,]	[Scott, Doe,]
105	1968	Male	[Blood Test, MRT,]	[03/03/19,03/04/19,]	[Fox, White,]
106	1990	Female	[Session, Abortion]	[03/03/19,03/08/19]	[Black, Scott]
107	1968	Male	[Blood Test, MRT]	[03/02/19,03/06/19]	[Scott, Fox]

Quantify Uniqueness

CAU

Christian-Albrechts-Universität zu Kiel

Considering events as points: p₂ = (Actvity₂, Timestamp₂, Doctor₂)

Case	Birth	Gender	Activity	Timestamp	Doctor
104	1935	Male	[Blood Test, CT,]	[03/03/19 <mark>,03/05/19</mark>]	[Scott, Doe,]
105	1968	Male	[Blood Test, MRT,]	[03/03/19, 03/04/19,]	[Fox, White,]
106	1990	Female	[Session, Abortion]	[03/03/19, 03/08/19]	[Black, Scott]
107	1968	Male	[Blood Test, MRT]	[03/02/19, 03/06/19]	[Scott, Fox]

Quantify Uniqueness

Considering events as points: p₁ = (Actvity₁)

	Case	Birth	Gender	Activity	Timestamp	Doctor
	104	1935	Male	[Blood Test, CT,]	[03/03/19, 03/05/19,]	[Scott, Doe,]
	105	1968	Male	[Blood Test, MRT,]	[03/03/19, 03/04/19,]	[Fox, White,]
→	106	1990	Female	[Session, Abortion]	[03/03/19,03/08/19]	[Black, Scott]
	107	1968	Male	[Blood Test, MRT]	[03/02/19,03/06/19]	[Scott, Fox]

1/4 = 0.25 = 25% re-identification risk

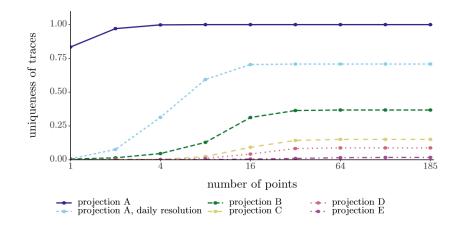
Quantify Uniqueness

Considering events as points: p₁ = (Actvity₁, Timestamp₁)

	Case	Birth	Gender	Activity	Timestamp	Doctor
	104	1935	Male	[Blood Test, CT,]	[03/03/19,03/05/19,]	[Scott, Doe,]
	105	1968	Male	[Blood Test, MRT,]	[03/03/19,03/04/19,]	[Fox, White,]
→	106	1990	Female	[Session, Abortion]	[03/03/19,03/08/19]	[Black, Scott]
→	107	1968	Male	[Blood Test, MRT]	[03/02/19,03/06/19]	[Scott, Fox]

2/4 = 0.50 = 50% re-identification risk

Quantify Uniqueness


Considering events as points: p₁ = (Actvity₁, Timestamp₁, Doctor₁)

	Case	Birth	Gender	Activity	Timestamp	Doctor
	104	1935	Male	[Blood Test, CT,]	[03/03/19,03/05/19,]	[Scott Doe,]
	105	1968	Male	[Blood Test, MRT,]	[03/03/19,03/04/19,]	[Fox, White,]
→	106	1990	Female	[Session, Abortion]	[03/03/19.03/08/19]	[Black] Scott]
→	107	1968	Male	[Blood Test, MRT]	[03/02/19 03/06/19]	[Scott, Fox]

4/4 = 1.00 = 100% re-identification risk

Uniqueness for Cases of Sepsis Event log

Requirements for Privacy-Preserving Process Mining Techniques

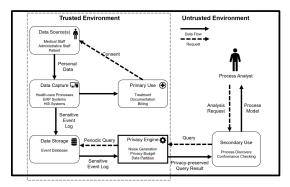
Anonymity

Unlinkability

Notice

CAU

Christian-Albrechts-Universität zu Kiel


Elkoumy, G., Fahrenkrog-Petersen, S. A., Sani, M. F., Koschmider, A., Mannhardt, F., Voigt, S. N. V., Rafiei, M., & Waldthausen, L. V. Privacy and Confidentiality in Process Mining - Threats and Research Challenges. ACM Transactions on Management Information Systems, 2021, in press.

State-of-the Art

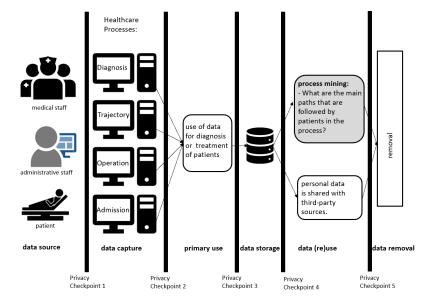
	Anonymity	Unlinkability	Notice	Transparency	Accountability
TLKC	х	x			
PRETSA	х	x			
PPPM	x	x			
PRIPEL	x	x			
Multi-party computation	х				

• Beside the requirements of process mining techniques, also data, application and presentation are requirements

Privacy Preserving Process Mining

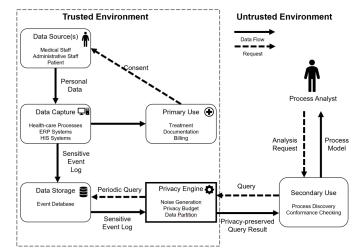
F. Mannhardt, A. Koschmider, N. Baracaldo, M. Weidlich, J. Michael: *Privacy-Preserving Process Mining: Differential Privacy for Event Logs*, Business & Information Systems Engineering 61(5), 2019

J. Michael, A. Koschmider, F. Mannhardt, N. Baracaldo, B. Rumpe: *User-Centered and Privacy-Driven Process Mining System Design for IoT*. CAiSE Forum 2019: 194-206, Springer



Identification of data passes and privacy checkpoints for hospital health processes

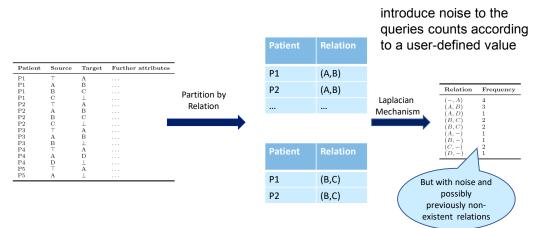
CAU


Christian-Albrechts-Universität zu Kiel

Laplacian mechanism is used to provide differential privacy for counting the number of records in a database

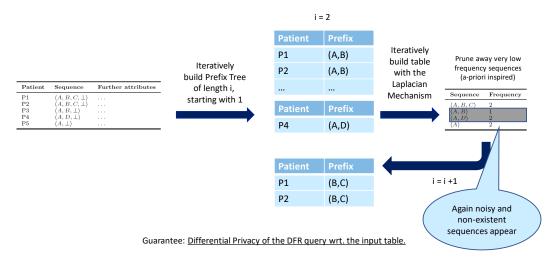
Privacy Model

- we assume a centralized privacy approach
- sensitive data is stored as an event log in protected data storage
- privacy engine acts as the single point of access for process mining algorithms and introduces noise to each query result
- no difference for data provider between the data used by the process mining algorithm regardless of whether his/her data is included or not


C A U

Our Initial Approach – Directly-Follows Relation (DFR)

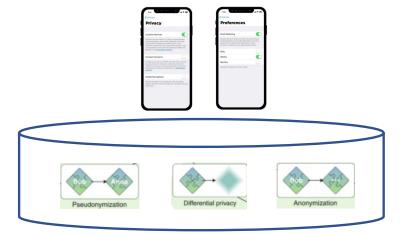
CAU


Christian-Albrechts-Universität zu Kiel

Guarantee: Differential Privacy of the DFR query wrt. the input table.

if one would sequentially query information from the same data source, the privacy budget is reduced by the sum of the individual parameters

Our Initial Approach – Activity Sequences

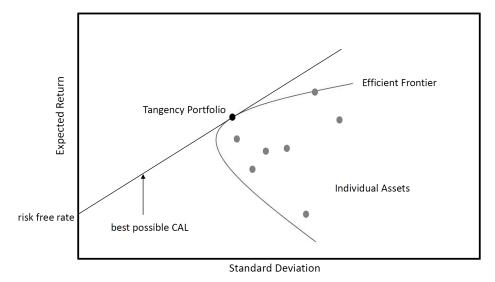


we treat each trace as a sequence of identifiers

Current Steps

- Development of a log generator for synthetic, privacy-preserving event logs
 - ➢use of Generative Adversarial Network (GAN)
- Noise/Outlier quantification model

- Challenges: Interpretable Quantification of Privacy Disclosure
 - more reliable and interpretable metrics of privacy disclosure



Challenges: Balancing Risk and Utility

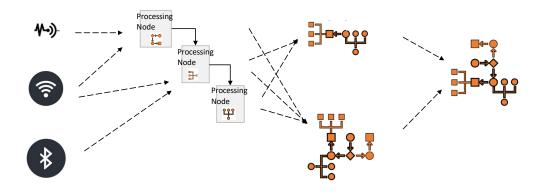
Elkoumy, G., Fahrenkrog-Petersen, S. A., Sani, M. F., Koschmider, A., Mannhardt, F., Voigt, S. N. V., Rafiei, M., & Waldthausen, L. V. Privacy and Confidentiality in Process Mining - Threats and Research Challenges. ACM Transactions on Management Information Systems, 2021, in press.

Challenges: Balancing Risk and Utility

source: https://en.wikipedia.org/wiki/Efficient_frontier

CAU

CAU

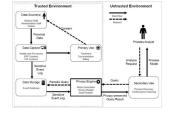

Christian-Albrechts-Universität zu Kiel

Christian-Albrechts-Universität zu Kiel

Challenges: Distributed Privacy

• Distributed Privacy

Challenges: Distributed Privacy


- Computational Challenges:
 - with increasing dimensions of attributes, it becomes more unpractical to achieve privacy-preserving process mining
- Traceability Challenge:
 - trace data-life cycle and ensure consent, right to be forgotten
- Transparency Challenge
 - notify who is using the data

Summary and Outlook

