

Confidentiality Enhanced Life-Cycle Assessment

Sakine Yalman & Achim D. Brucker

Outline

- Background and Motivation
 - Supply Chain Life-Cycle Assessment
 - Security and Privacy Concerns
- Confidentiality Enhanced Life-Cycle Assessment
- Evaluation
- Future Works

Supply Chain Systems Life-Cycle Assessment

Confidentiality Enhanced Life-Cycle Assessment

7 September 2021

Security and Confidentiality Concerns

- Protection of trade secrets is problematic because of data sharing in supply chain, precisely in life-cycle assessment!
- These concerns prevent close collaborations within supply chains and limit the achieving better life cycle assessments of products.

IoT enters Life-Cycle Assessment

Today, LCA:

- Offline
- Historic values

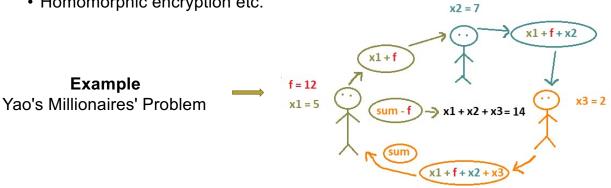
With IoT, LCA:

- Actual sensor data
- Real-time

Confidentiality Enhanced Life-Cycle Assessment

7 September 2021

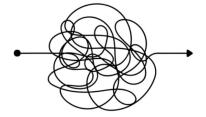
Security and Confidentiality Problems Persist!


LCA has some potential security risks. It can reveal:

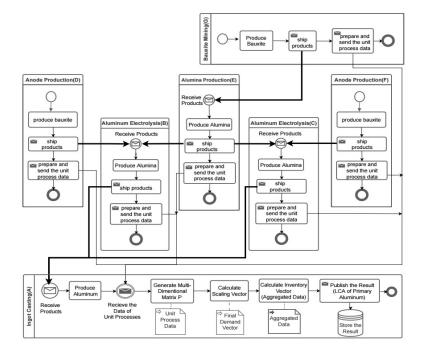
- Confidential data about production processes,
- Business relationships between partners in a supply chain.
- Therefore, companies are not willing to share the data necessary for LCA based on sensor data.

Privacy-Enhancing Technologies

Privacy Preserving Techniques


- Secure Multi-Party Computation
- Homomorphic encryption etc.

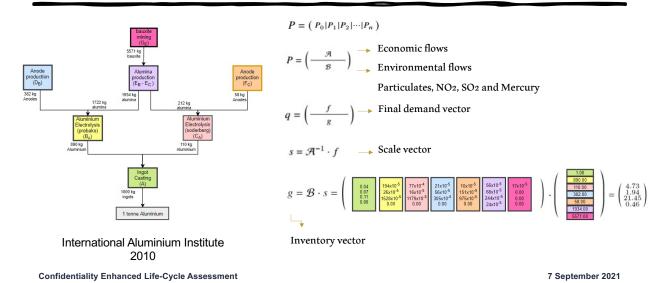
Confidentiality Enhanced Life-Cycle Assessment


Privacy Preserving Techniques are Not well suitable for smart devices!

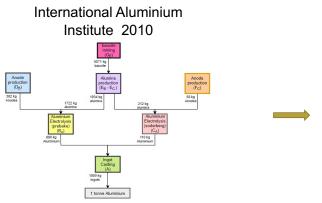
• Performance, storage and resources constrains.

The BPMN diagram of LCA of Aluminum **Production**

International Aluminium Institute - 2010

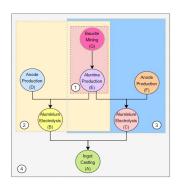


Confidentiality Enhanced Life-Cycle Assessment


7 September 2021

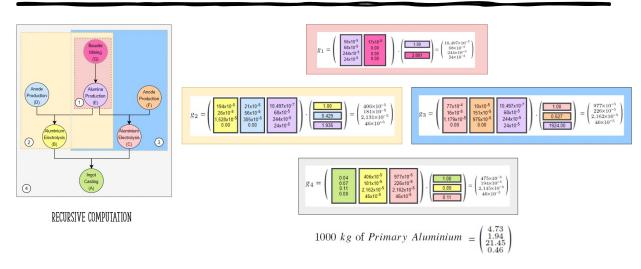
7 September 2021

Traditional Life-cycle assessment


An Approach to Ensure Confidentiality in LCA

A big system with a lot of parties and complex computations

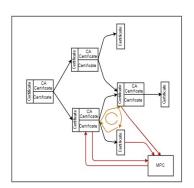
Confidentiality Enhanced Life-Cycle Assessment

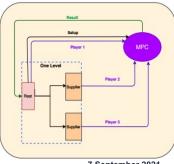

Recursive computation

One level aggregations Small groups of parties and Lightweight computations

7 September 2021

An Approach to Ensure confidentiality in LCA

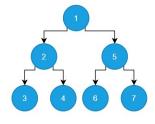

Confidentiality Enhanced Life-Cycle Assessment

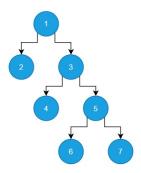

7 September 2021

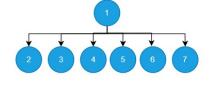
How are we ensuring confidentiality?

- Sub-computations / aggregations prevents companies to learn the relationships between other companies in the supply chain.
- Certificate Authorization protects from outside attacks.
- Secure Multi-Party Computation (SMPC) prevent the disclosure of companies' confidential data.
- Why we cannot apply SMPC into traditional LCA naively:
 - Complexity of formula being computed,
 - The number of companies involved.

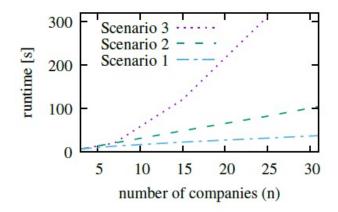
Confidentiality Enhanced Life-Cycle Assessment






7 September 2021

Not only Security/Privacy but also Performance!


- To evaluate the performance of our LCA prototype, we use benchmarking.
- Generate and run 3 different test scenarios; a balanced binary tree, a linear list and a flat supply chain.

The Runtime Results of Test Scenarios

Confidentiality Enhanced Life-Cycle Assessment

7 September 2021

Future Work

In SMPC, the function being computed is already encrypted. However, participants in the supply chain can still enter wrong values.

• Combine our approach with Secure Commitment Schemes to be able to check participants enter the correct values.

SPMC guarantees that participants of a computation only learn their own inputs and the result of the computation and ignores the information that participants of a supply chain can infer from information learned within one or several LCAs.

- We plan to develop a security and privacy analysis that goes beyond the rather abstract security guarantees provided by SMPC.
- We plan to **extend our threat analysis** to include such inferred information, supporting companies in their decision to join (or not join) a supply chain.

Thank you.

CONTACT:

Sakine Yalman

sy359@exeter.ac.uk

https://emps.exeterac.uk/computer-science/staff/sy359

@sakine_yalman

Achim Brucker

<u>a.brucker@exeter.ac.uk</u>

https://emps.exeter.ac.uk/computer-science/staff/ab1185

Confidentiality Enhanced Life-Cycle Assessment

7 September 2021

The Detailed Results

n	$t_1[s]$	$\frac{\delta_1}{t_1}$	$t_2[s]$	$\frac{\delta_2}{t_2}$	$t_3[s]$	$\frac{\delta_3}{t_3}$
3	7	0.06	7	0.07	7	0.06
7	14	0.03	21	0.04	21	0.02
15	23	0.03	49	0.02	121	0.04
25	-	_	83	0.01	312	0.03
31	38	0.02	105	0.01	-	-